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NON-LINEAR PROBLEMS OF CONNECTING COMPOSITE SPATIAL BODIESPND 
THIN SHELLS, AND VARIATIONAL METHODS FOR THEIR SOLUTION 

V.N. PAIMUSHIN 

The contact formulation of geometrically non-linear problems of connecting 
composite spatial bodies, as well as thin composite shells interconnected 
by a butt (rigidly or not, as a hinge, say) is considered. In this 
formulation, the composite body (shell) is separated into individual 
elements, appropriate interaction reactions are introduced into the 
consideration on the common interface, and an appropriate boundary value 
problem is formulated for each element. An artificial increase in the 
number of unknowns of the problem here results in a corresponding increase, 
in the number of equations because of the replacement of the static 
connection conditions for the elements by double the number of static 
boundary conditions on the common interface. While solving the problem, 
the interaction reactions are determined from the kinematic conditions 
for the element connections. 

It is shown that the advantage of such a formulation for problems of 
the connection of composite bodies is the considerable simplification 
of the application of methods of the direct calculus of variations for 
their solution. To this end, functionals referred to the class of 
generalized Lagrange functions for problems defined on discontinuous stress, 
deformation, and displacement fields /l-3/, to which the unknown interaction 
reactions are also referred together with the displacements to the number 
of functional arguments, are constructed for spatial composite bodies and 
composite shells. It is proved that the conditions for their stationarity 
yield variational equations from which static boundary conditions 
equivalent to the static connection conditions, and kinematic connection 
conditions follow in addition to the equilibrium equations and the static 
boundary conditions onthe boundaries where the external static forces 
are given. According to these equations, the use of direct methods for 
solving the problems does not require the construction of coordinate 
functions for the displacements with preliminary satisfaction of the 
kinematic connection conditions. 

1. Differential and variational formulation of non-linear contact problems 
of the theory of elasticity of composite bodies. A composite body is considered that 
consists of two elements with volumes I;n, (n= 1.2) and is in equilibrium under the effect of a 

certain system of given surface forces P,,,) and volume forces PC,) * It is assumed that the 

spaces 1‘(,) are parametrized by the curvilinear coordinates zy,,, (a = 1,2.3) with the radius-vectors 

prior to the deformation P,,, = P(I., (&) * The deformations are considered to be small, the 

displacements are finite, and the fundamental notation is traditional (see /4/, for instance). 
Two variations inthe formulation of mechanics problems are possible for the body mentioned. 
The first is natural and is the formulation of equilibrium equations for each element of 

the body (p,:,, = p(,,, - 1 ("I; z$, are the stress tensor components) 

the corresponding static and kinematic boundary conditions (VP' are vector components of the 
unit normal ,9(n) to S,,, with respect to the basis vectors pgl, 
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at those sections S&, and S&, of the boundary surfaces S(,,,on which the surface force p,,,, 

and displacements C(")' vectors are given. In addition to (1.2) and (1.3), the static and 
and kinematic matching conditions 

"(I,+' 
aR rt).,b') = _ ap (?).\.(?) ($X 

J(Z)& D (,,) E SP) (1.4) 

t (1) = I$’ (ZE,, E 9) (1.5) 

should be satisfied at points of the common surface connection elements S&,= 9 . 

The second formulation is artificial and corresponds to the contact formulation of the 
problem according to which unknown reactive interaction forces NJ(,)= -go,= g 

into consideration on S" Conditions (1.4) are here replaced by twice the 
boundary conditions of the form 

are introduced 

number of static 

ni3 (I,- .(I) _ 
%,PP '(1 - 9. @Yl;"r~' = -g (XE,, S 9). 

The reactive force vector occurring here is determined when solving the 
condition (1.5). 

We introduce the functional 

I = i i 5s I',,+%,,,- 11 9,. ,NdS,,,) - SS{ 
1,=1 S,' 

(' 1 
sv “(,, I 

(F,,,$'") - "‘(f,,) dI-(,,,j 

(1.61 

problem using 

(I.71 

into the consideration, which is the total potential energy of the system of elements of the 
composite body in which Ii‘,,,, is the specific strain potential energy of the n-th element. This 

functional differs from the traditional Lagrange functional corresponding to the relationships 
(1.1),(1.2),(1.4) by the second component that expresses the work of the non-equilibrated 
reactive force g on the appropriate displacements. It is easy to prove that the necessary 
set of relationships corresponding to the second formulation of the problem will follow from 
the variational equation (F$ are the contravariant strain tensor components of the n-th 
element) 

6I= i, [ 1s P(,,+U(')dS(,,, - ss qc,+U(‘)dSc,,) f (1.8) 

?,=I SP 
(’ ) 

{$ (F(. ,N (-; - ~;~$tjl;)) Klz,, - 
‘c 1 

sTY $ (~(l)_l_w)bqdSq=O 

if the kinematic relationships 

are introduced here and the traditional transformations are performed using the Gauss's 
theorem. A feature of the application of (1.8) to solve problems by direct methods is the 
need to construct coordinate functions for the two-dimensional unknowns P;r,) = P(,,iP';,,, and the 

three-dimensional unknowns c't"= U(")p&"), but without preliminary satisfaction of conditions 
(1.5) and (1.6). 

2. Variational formulation of non-linear contact problems for thin 
composite shells. Withcut loss of generality we shall consider a structure consisting 
of two shells with middle surfaces :(,,) and boundary contours C(,,,E :,,,,which are connected 

without eccentricity by a junction at a certain common section Cb, = CQE C,,,,. We refer the 

shell spaces 1(,,) to curvilinear coordinate systems z;~,,. z&,= 2(n) related normally to the 

surfaces z(,,) by the equations PO<) = r(78) - ;(7,)'",,,) in which r(,>) = r(,‘) (&) are radii-vectors of the 

points M(,) E :(,,). and nl\,,, are unit vectors normal to '(70. Here I?) are coordinate vectors on 

(n) OIh. -= r, PQr("! t'") = _,(',)$) = __$)arn 

;%ns of thehsurgace 

’ 
_ ' 

(1,) OJ(,) are coefficients of the first and secondquadratic 

-(Q). n,,,, and T(,>) are unit vectors of the normal and tangent to the lines C,,, 

in a plane tangent to :(,,). Yi" are the symbols of the covariant derivatives relative to (#? 
th 

and (r is the angle between the vectors m(,) and m,?, at points of the section CqEC(,,) at which, 

according to the figure, the following relations hold 

"(3 = -co-c",, 2 sin cmo,, m(?, = $in eo,,, + 03: em,,,,, 7ui = - T,:,. 
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Within the framework of the hypotheses of the classical ICirchhoff-Love theory, the ;T_;tors 
of the finite displacements L& and the covariant tangential strain tensor components %i; 

at the points (ffnJ, r(,); of the shell are given by /4/ 

V:,,, = I?") = ,-(',I + ifnj (rnr) - m(,,)), --h&2< ztnj <h&2 (2.1) 

Ffk(n) = ?:a) i Z(#~‘ (2.2) 

24'= r!"q+W + $4~q.W J" p(nJ.(n)q$Jn) 1 1 PI (2.3) 

zx$' = q- h$;b = @+ pm:"" _L pm!"'* (2.4) 

where r!@ = I('~) + dn) and ri(nl' are the radius-vectors of points of the strained middle surfaces 

G) and the coordinate vectors thereon, P are displacement vectors of the points z(,,), III:,,,, mt(@ 

are unit vectors of the normals to 3;") and their partial derivatives with respect to 'in). 

By using (2.1), the volume forces F(,) and the surface forces acting on the boundary 

surfaces 2(n) = _fhl,,)!2 are reduced /4/ to surface force and moment vectors 

x (,,) 5 x; ,)‘l)i). +. x~.,,m: )’ M,,) = .v ;,,,p (2.5) 

referred to the unit areas s(,,), while the external surface forces acting on the boundary cuts 

are reduced to contour force and moment vectors 

a;,,, = @!:'& 7 @::,'r:,,, T cD;)m:,,,, M("' = L;;;)n* II (8') - Lt')r;,) (2.6) 

acting on the sections C&EC(~) which are referred to unit length C,,,,and are expanded over 

the appropriate axes of the deformed trihedra (n~~~,~~,~~.rn~,,~~. 

Using this approach, let us separate the construction into two shells and, by analogy with 
(2.6), reduce the reactor force vector q=qcl; on the common contact surface Sq to the 

principal vector Q= Qllj and the principle moment R= II,,) 

Q = Q,n:, 7 @vGT:~, 1 Q, al:,, R = R,,n:,, - R,,T$ 

referred to unit length of the separating line cq. 
By the assumptions made for the shell system under consideration, the variational equation 

(1.8) can be reduced to the form 

(2.8) 

in which T$,. Mi$aretbecontravariant components of the internal tangential force and bending 

moment tensors, where by virtue of IL) =-T&, and Q(*, = -Q. Ro, = - R the equations Q$= Q,_,R~), 
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Sn hold on C?. 

Equation (2.8) obtained in a scalar representation is used 
interaction problems by Ritz's method in the case of their rigid 

to solve contact shell 
connection on the junction 

line, according to which five one-dimensional coordinate functions are constructed for the 
components of the vectors Q,R and six two-dimensional coordinate functions are constructed for 
the displacement vector components v (n) without first satisfying the kinematic shell connection 
conditions 

\.(I) = \('). [m:,,, mQ, - s+,)] = I$,,. m:, -mo,] (zb,, E C') . (2.9) 

In the case of a hinged connection of the shells, it is sufficient to set Rn= (1 in (2.8), 

which results in reducing the number of desired unknowns inthe problem by one. 
If relationships (2.3) and (2.4) are substituted into (2.8) and the usual manipulations 

/4/ are performed, it is possible to arrive at another form of the variational equation 
constructed, which is a vector inscription of the equation for the Bubnov-Galerkin method. 

Remark. The variational problem for the functional (1.8) can be obtained from the 
variational problem for the Lagrange functional of a composite body 

II= $I iis "~JJ(")dS~,) -t $ (F&(") - n*(,)) ,%)I 

@') 
I, 

under the constraint (1.5) using the well-known method /2, 5/of introducing the undetermined 
Lagrange multiplier, whose mechanical analogueisindeedthe reactive interaction force vector 
q. Such a method is utilized, in particular, in mixed linear problems with unknown reactions 
in relations for system of deformable elements with a finite number of degrees of freedom/2/. 

We also note that within the framework of the relationships of the classical Kirchhoff- 
Love theory of shells there is the possibility of satisfying just four scalar connection 
conditions 

\.(lj = ,(?) , n ,l)mTI) = n,,, mt, ($, E ( ‘1 (2.10) 

Consequently, manipulation by using the method of Lagrange undetermined multipliers of 
the ordinary Lagrange functional written for a composite shell under the additional conditions 
(2.10) gives a result different from that obtained. 

The range of application of this approach is not limited just to problems Of the connection 
of composite bodies and thin shells. Effective direct methods of solving three-dimensionai 
problems of the theory of elasticity and two-dimensional problems of shell theory in non- 
canonical domains can be developed on its basis. 
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